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Abstract. Motivated by “finite alphabet” approximation problems in infi-
nite-dimensional Banach spaces we study the behavior of the inhomogeneous
minimum of a convex body K with respect to the integral lattice Zn, if
Zn is compressed along (some of) the coordinate axes. In particular, we
show that for certain convex bodies and deformations the inhomogeneous
minimum can be arbitrarily large which answers a question in the negative
posted in the context with the above mentioned approximation problems.

1. Introduction

In [1] the authors study several approximation properties related to the pro-
blem of approximating an element of an infinite-dimensional space by a discrete
structure which might be regarded as a kind of infinite-dimensional lattice. Re-
garding these approximations they pose at the end of their article several ques-
tions and the corresponding finite-dimensional analogues [1, Questions 7.1, 7.2].
Here we investigate these finite-dimensional versions for which we need some
basic notation from Geometry of Numbers (see, e.g., [3, 2]).

The set of all symmetric convex bodies with respect to the origin 0 in Rn

with non-empty interior is denoted by Kn
0 . For K ∈ Kn

0 the inhomogeneous
minimum of K with respect to the integral lattice Zn is defined as

µ(K) = min{µ > 0 : Zn + µ K = Rn},
i.e., it is the smallest positive number such that the dilated body µ(K) K covers
Rn by translates of the lattice Zn. Obviously, for any positive number ρ > 0 we
have µ(ρK) = (1/ρ)µ(K), and the inhomogeneous minimum measures how well
the space can be covered by lattice translates of K. According to its covering
properties three families of convex bodies are considered in [1]:

Cn
1 = {K ∈ Kn

0 : µ(K) ≤ 1},
Cn

2 =
{
K ∈ Kn

0 : µ
(
diag(ρ1, . . . , ρn) K

) ≤ 1, for all ρi ∈ [1, 2]
}

,

Cn
3 =

{
K ∈ Kn

0 : [0, 1]n ⊆ {0, 1}n + K
}
.

Here diag(ρ1, . . . , ρn) denotes the n × n diagonal matrix with diagonal en-
tries ρi. Observe, that in the case ρi = ρ, 1 ≤ i ≤ n, we obviously have
µ
(
diag(ρ1, . . . , ρn) K

)
= µ(ρK) = (1/ρ)µ(K). The first set Cn

1 consists just of
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Tecnoloǵıa 2007/2010), 04540/GERM/06.

1



2 MARTIN HENK AND MARÍA A. HERNÁNDEZ CIFRE

all bodies which cover the space by lattice translates and it is also clear that the
bodies in Cn

2 and Cn
3 share this property. However, the inclusions are strict, i.e.,

Cn
2 ( Cn

1 , Cn
3 ( Cn

1 .

For instance, let K = conv {±(1/2, 1)ᵀ,±(1/2, 2)ᵀ} ∈ Cn
1 (see Figure 1 left).

Clearly K is a lattice space filler, i.e., a body which covers the space by lat-
tice translates in such a way that two different translates do not overlap, but
apparently K is not contained in Cn

3 . Moreover in Section 4 we will show that
K ∈ Cn

2 and hence we also know Cn
2 6⊆ Cn

3 ; in the figure (on the right) the
parallelogram K has been multiplied by diag(6/5, 11/10).
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Figure 1. An example for Cn
1 6⊆ Cn

3 and Cn
2 6⊆ Cn

3 .

In order to verify that Cn
1 6⊆ Cn

2 we use the following example taken from
[1]. Let K be the lattice space filler conv {±(1/4, 1)ᵀ,±(3/4, 1)ᵀ} (see Figure 2
left). If we multiply K by diag(10/9, 1) then we see (Figure 2 right) that it is
not a covering anymore. Since K ∈ Cn

3 , the example also shows that Cn
3 6⊆ Cn

2 .
In [1, Question 7.3] the authors raised the question whether we can have

Cn
1 ⊆ Cn

2 at least “up to a constant”, i.e.,

Does there exist a universal constant c ≥ 1 such that
c Cn

1 ⊆ Cn
2 , i.e., cK ∈ Cn

2 for all K ∈ Cn
1 ?

(1.1)

We will answer that question in the negative in Section 2. In fact, we will show
that there even does not exist a constant which might depend on the dimension.
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Figure 2. An example for Cn
1 6⊆ Cn

2 and Cn
3 6⊆ Cn

2 .

Theorem 1.1. For any n, M ∈ N, n ≥ 2, there exists a convex body K ∈ Cn
1

such that MK /∈ Cn
2 .

Hence in order to belong to Cn
2 or Cn

3 a body K ∈ Cn
1 has to satisfy more

structural properties. In order to describe such a property which was suggested
in [1] we introduce the following notation: for a subset I ⊆ {1, . . . , n} let LI be
the (#I)-dimensional coordinate plane given by

LI =
{
x ∈ Rn : xi = 0 for all i ∈ {1, . . . , n} \ I

}
,

where #I denotes the cardinal of I and L{1,...,n} is meant to be Rn. With this
notation we set

Cn
1 =

{
K ∈ Kn

0 : µ(K ∩ LI) ≤ 1 for all I ⊆ {1, . . . , n}},

where the inhomogeneous minimum µ(K ∩ LI) is taken with respect to the
(#I)-dimensional integral lattice Zn ∩LI . Regarding this restricted family Cn

1 ,
Dilworth et. al. asked [1, Questions 7.1/7.2]:

I) Is Cn
1 ⊆ Cn

2 or Cn
1 ⊆ Cn

3 ?

II) Does there exist (at least) a universal constant c ≥ 1 such that

c Cn
1 ⊆ Cn

2 or c Cn
1 ⊆ Cn

3 ?

(1.2)

Unfortunately, we can settle that problem only in the planar case, where I)
has an affirmative answer and which can be embedded in the following slightly
more general result.

Theorem 1.2. Let n ≥ 2. Then dn/2e Cn
1 ⊆ Cn

2 and (n/2) Cn
1 ⊆ Cn

3 .

Moreover, as shown in Remark 3.2, these inclusions are already strict in the
case n = 2.

The paper is organized as follows. The proof of Theorem 1.1 will be given in
the next section. In Section 3 we will give our partial answer to question (1.2),
and final remarks and comments are contained in Section 4.

2. A negative answer to question (1.1)

Obviously, if a convex body K ∈ Kn
0 contains the cube Cn of edge length 1

centered at the origin then µ(K) ≤ 1. Since Cn is symmetric with respect to
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all coordinate hyperplanes we certainly have that Cn ⊆ diag(ρ1, . . . , ρn) Cn for
any choice of real numbers ρi ≥ 1. Thus if

r(K; Cn) = max{r > 0 : r Cn ⊆ K}
denotes the inradius of K with respect to Cn, we have for all K ∈ Kn

0

1
r(K;Cn)

K ∈ Cn
2 .

Of course, even for bodies in the class Cn
1 , the factor 1/r(K;Cn) might be arbi-

trarily large. The next lemma, however, shows that this is all what we actually
can expect, i.e., 1/r(K; Cn) has the right order for a factor c guaranteeing
cK ∈ Cn

2 for all K ∈ Cn
1 .

Lemma 2.1. For any dimension n ≥ 2 and any positive integer M there exists
a lattice space filler Pn

M ∈ Kn
0 with r(Pn

M ;Cn) = 1/
(
2(M + 1)

)
and c Pn

M ∈ Cn
2

only if c ≥ M .

Proof. We start in dimension n = 2. For the given integer M we consider the
parallelogram P 2

M = conv {±(1/2)(M + 1,M + 2)ᵀ,±(1/2)(M − 1, M)ᵀ} (see
Figure 3 left).
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Figure 3. The parallelograms P 2
M and P

2
M for M = 4.

Clearly P 2
M is the linear image of the cube C2 under the unimodular trans-

formation

A =
(

M 1
M + 1 1

)
∈ GL(2,Z).

Hence P 2
M is a lattice space filler (see Figure 4 left) and the norm |·|P 2

M
associated

to P 2
M is given by

|(x, y)ᵀ|P 2
M

= 2 max
{| − x + y|, ∣∣(M + 1)x−M y

∣∣} .

From that we also conclude that r(P 2
M ; C2) = 1/

(
2(M + 1)

)
.
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Multiplying P 2
M by the diagonal matrix diag

(
(M + 1)/M, 1

)
leads to a para-

llelogram P
2
M (see Figure 3 right) with norm

|(x, y)ᵀ|
P

2
M

= 2 max
{∣∣∣∣−

M

M + 1
x + y

∣∣∣∣ , |M x−M y|
}

.

In order to determine the inhomogeneous minimum of P
2
M we note that the

inhomogeneous minimum of a convex body K ∈ Kn
0 is the maximum distance

which a point can have from the lattice Zn, where the distance is measured
with respect to the norm associated to the body K (see [3, pp. 98–99]). Hence

µ
(
P

2
M

)
= max

(x,y)ᵀ∈R2
min

(z1,z2)ᵀ∈Z2

∣∣∣∣
(

z1

z2

)
−

(
x

y

)∣∣∣∣
P

2
M

≥ min
(z1,z2)ᵀ∈Z2

∣∣∣∣
(

z1

z2

)
−

(
0
1
2

)∣∣∣∣
P

2
M

= M

(see Figure 4 right). In fact, it is easy to see that we have actually equality.
Hence for any constant c with c P 2

M ∈ Cn
2 we have the lower bound c ≥ M which

proves the lemma in the planar case.
For general n ≥ 3 we just take a parallelepiped given as an iterated prism

over P 2
M , i.e.,

Pn
M := P 2

M + conv
{
−1

2
e3,

1
2
e3

}
+ . . . + conv

{
−1

2
en,

1
2
en

}
.

Here ei denotes the i-th canonical unit vector, and P 2
M is embedded in the plane

L{1,2}. Of course, Pn
M is a lattice space filler with r(Pn

M ; Cn) = r(P 2
M ; C2), and

multiplying Pn
M by the diagonal matrix diag

(
(M + 1)/M, 1, 1, . . . , 1

)
leads to

the parallelepiped

P
n
M = P

2
M + conv

{
−1

2
e3,

1
2
e3

}
+ . . . + conv

{
−1

2
en,

1
2
en

}
.

Hence µ(Pn
M ) = µ(P 2

M ) ≥ M . ¤

Figure 4 shows that the parallelogram P 2
4 is clearly a space filler, whereas P

2
4

needs to be multiplied by 4 in order to cover the plane by translates of Z2.
Of course, Theorem 1.1 is a direct consequence of the above result.

3. Partial answers to question (1.2)

The proof of Theorem 1.2 relies heavily on a theorem about planar finite
lattice coverings (see [4]). In order to state it we need the notion of lattice
polygon, which is the convex hull of finitely many lattice points in the plane.
Moreover, for such a lattice polygon P , the boundary of P is denoted by bdP .

Theorem 3.1 ([4]). Let K ∈ C2
1 and let P ⊂ R2 be a lattice polygon. Then

P ⊆ (P ∩ Z2) + K if and only if bdP ⊆ (P ∩ Z2) + K.

Proof of Theorem 1.2. On account of Theorem 3.1 both inclusions can be easily
proved by inductive arguments.

First we treat the inclusion (n/2) Cn
1 ⊆ Cn

3 . Let n = 2 and let K ∈ C2
1. Then

K ∈ C2
1 and moreover K ∩ L{i} covers the coordinate axis L{i} by translates of
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Figure 4. The parallelogram P
2
4 is not a lattice space filler.

Z2 ∩ L{i}, i = 1, 2. In particular, the length of the sections K ∩ L{i}, i = 1, 2,
are not smaller than 1, which shows that

conv{0, ei} ⊆
[(

K ∩ L{i}
)

+ 0
] ∪ [(

K ∩ L{i}
)

+ ei

]
, i = 1, 2.

Therefore the boundary of the square [0, 1]2 is covered by {0, 1}2 + K, and
Theorem 3.1 implies that [0, 1]2 ⊆ {0, 1}2 + K. Thus K ∈ C2

3 , as required.
Next let n ≥ 3 and let K ∈ Cn

1 . We have to show that for any x ∈ [0, 1]n

there exists v ∈ {0, 1}n such that |x− v|K ≤ n/2, where again | · |K denotes the
norm induced by K. So let x = (x1, . . . , xn) ∈ [0, 1]n and by our hypothesis we
may assume 0 < xi < 1, 1 ≤ i ≤ n. Since K + Zn is a covering, there exists
b ∈ Zn verifying |x − b|K ≤ 1. Now if b 6∈ {0, 1}n then there exists λ, with
0 < λ ≤ 1/2, such that (1 − λ)x + λb is contained in a facet F of the cube
[0, 1]n. Thus, by induction, we may assume that there exists v ∈ {0, 1}n ∩ F
such that

∣∣(1− λ)x + λb− v
∣∣
K
≤ ∣∣(1− λ)x + λb− v

∣∣
K∩ (affF−v)

≤ n− 1
2

;

here affF denotes the affine hull of F . Finally, by the triangle inequality we
can conclude that

|x− v|K ≤ n− 1
2

+ λ|x− b|K ≤ n

2
.

Next we consider the inclusion Cn
1 ⊆ dn/2e Cn

2 . Let n = 2 and let ρ1, ρ2 ≥ 1.
For K ∈ C2

1 we certainly know that also the body diag(ρ1, ρ2) K ∩ L{i} covers
the coordinate axis L{i}. Hence, as in the first case, we conclude

(3.1) diag(ρ1, ρ2) K ∈ C2
3 .

Thus µ(diag(ρ1, ρ2) K) ≤ 1 and, in particular, K ∈ C2
2 .
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Now let n ≥ 3. Let K ∈ Cn
1 and let ρi ≥ 1, 1 ≤ i ≤ n. Furthermore,

let x ∈ [0, 1]n, and for I ⊆ {1, . . . , n} we write xI to denote the orthogonal
projection of x onto the (#I)-dimensional coordinate plane LI . By (3.1) we
know that for any subset I with #I = 2 there exists vI ∈ LI ∩{0, 1}n such that

xI ∈ vI +
[
diag(ρ1, . . . , ρn) K ∩ LI

]
.

Since K ∈ Cn
1 we have an analogous relation for singletons I. Thus if n is odd

we get

x = x{1,2} + x{3,4} + · · ·+ x{n−2,n−1} + x{n}

∈ v{1,2} + v{3,4} + · · ·+ v{n−2,n−1} + v{n} +
⌈n

2

⌉
diag(ρ1, . . . , ρn)K,

whereas for n even, since we can decompose the space in an orthogonal sum of
only 2-dimensional spaces, we obtain

x = x{1,2} + x{3,4} + · · ·+ x{n−1,n}

∈ v{1,2} + v{3,4} + · · ·+ v{n−1,n} +
n

2
diag(ρ1, . . . , ρn) K.

This shows that dn/2ediag(ρ1, . . . , ρn) K ∈ Cn
3 , and so we get dn/2eK ∈ Cn

2 . ¤

Remark 3.2. The parallelogram

Pε = conv
{
±(ε, 0)ᵀ,±

(
ε

4ε− 1
,

2ε

4ε− 1

)ᵀ}
,

1
4

< ε <
1
2
,

as depicted in Figure 5, shows that the inclusion C2
1 ( C2

3 is strict: it clearly
covers the square by translates of {0, 1}2 but µ(Pε ∩ L{1}) > 1.
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Figure 5. The parallelogram Pε ∈ C2
3\C

2
1 for ε = 2/5.

The same example (as well as the parallelogram shown in Figure 1) shows
that the inclusion C2

1 ( C2
2 is also strict.
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4. Final remarks

In order to complete the study of the possible inclusions among the different
families, we still have to show Cn

2 6⊆ Cn
3 , as promised in the introduction. To

this end we consider again the parallelogram K = conv {±(1/2, 1)ᵀ,±(1/2, 2)ᵀ}
(see Figure 1 left). Clearly K is a lattice space filler, and moreover, it is easy
to check that K covers the slab

{
(x, y)ᵀ ∈ R2 : −1/2 ≤ x ≤ 1/2

}
by translates

of Z2 ∩ {x = 0}, i.e.,

(4.1) {k e2 : k ∈ Z}+ K =
{(

x

y

)
∈ R2 : −1

2
≤ x ≤ 1

2

}
.

This is certainly still true if we replace K by diag(ρ1, ρ2) K, as long as ρ1, ρ2 ≥ 1.
So we have shown that all possible inclusions are strict.
We would like to remark that it seems to be rather difficult to give good

bounds on the inhomogeneous minimum µ
(
diag(ρ1, . . . , ρn) K

)
depending on ρi.

Regarded as a function in ρi, µ
(
diag(ρ1, . . . , ρn) K

)
“looks” to be rather “wild”.

For instance, Figure 6 shows a plot of the function µ
(
diag(ρ, 1)P 2

4

)
, 1 ≤ ρ ≤ 4.

Here P 2
4 is the parallelogram described in the proof of Lemma 2.1, see Figure 3.

Of course, whenever ρ is an integer we always have µ
(
diag(ρ, 1) P 2

4

) ≤ 1, but
not much more can be said.

Figure 6. µ
(
diag(ρ, 1)P 2

4

)
, 1 ≤ ρ ≤ 4.
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