COVERINGS AND COMPRESSED LATTICES

MARTIN HENK AND MARÍA A. HERNÁNDEZ CIFRE

ABSTRACT. Motivated by "finite alphabet" approximation problems in infinite-dimensional Banach spaces we study the behavior of the inhomogeneous minimum of a convex body K with respect to the integral lattice \mathbb{Z}^n , if \mathbb{Z}^n is compressed along (some of) the coordinate axes. In particular, we show that for certain convex bodies and deformations the inhomogeneous minimum can be arbitrarily large which answers a question in the negative posted in the context with the above mentioned approximation problems.

1. INTRODUCTION

In [1] the authors study several approximation properties related to the problem of approximating an element of an infinite-dimensional space by a discrete structure which might be regarded as a kind of infinite-dimensional lattice. Regarding these approximations they pose at the end of their article several questions and the corresponding finite-dimensional analogues [1, Questions 7.1, 7.2]. Here we investigate these finite-dimensional versions for which we need some basic notation from Geometry of Numbers (see, e.g., [3, 2]).

The set of all symmetric convex bodies with respect to the origin 0 in \mathbb{R}^n with non-empty interior is denoted by \mathcal{K}_0^n . For $K \in \mathcal{K}_0^n$ the inhomogeneous minimum of K with respect to the integral lattice \mathbb{Z}^n is defined as

$$\mu(K) = \min\{\mu > 0 : \mathbb{Z}^n + \mu K = \mathbb{R}^n\},\$$

i.e., it is the smallest positive number such that the dilated body $\mu(K) K$ covers \mathbb{R}^n by translates of the lattice \mathbb{Z}^n . Obviously, for any positive number $\rho > 0$ we have $\mu(\rho K) = (1/\rho)\mu(K)$, and the inhomogeneous minimum measures how well the space can be covered by lattice translates of K. According to its covering properties three families of convex bodies are considered in [1]:

$$\mathcal{C}_{1}^{n} = \{ K \in \mathcal{K}_{0}^{n} : \mu(K) \leq 1 \},\$$

$$\mathcal{C}_{2}^{n} = \{ K \in \mathcal{K}_{0}^{n} : \mu(\operatorname{diag}(\rho_{1}, \dots, \rho_{n}) K) \leq 1, \text{ for all } \rho_{i} \in [1, 2] \},\$$

$$\mathcal{C}_{3}^{n} = \{ K \in \mathcal{K}_{0}^{n} : [0, 1]^{n} \subseteq \{0, 1\}^{n} + K \}.\$$

Here diag (ρ_1, \ldots, ρ_n) denotes the $n \times n$ diagonal matrix with diagonal entries ρ_i . Observe, that in the case $\rho_i = \rho$, $1 \leq i \leq n$, we obviously have $\mu(\text{diag}(\rho_1, \ldots, \rho_n) K) = \mu(\rho K) = (1/\rho)\mu(K)$. The first set \mathcal{C}_1^n consists just of

²⁰⁰⁰ Mathematics Subject Classification. 52C07, 11H06.

Key words and phrases. Coverings, Lattices, Convex bodies.

Second author is supported by Dirección General de Investigación (MEC) MTM2007-64504 and by "Programa de Ayudas a Grupos de Excelencia de la Región de Murcia", Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia (Plan Regional de Ciencia y Tecnología 2007/2010), 04540/GERM/06.

all bodies which cover the space by lattice translates and it is also clear that the bodies in C_2^n and C_3^n share this property. However, the inclusions are strict, i.e.,

$$\mathcal{C}_2^n \subsetneq \mathcal{C}_1^n, \quad \mathcal{C}_3^n \subsetneq \mathcal{C}_1^n.$$

For instance, let $K = \operatorname{conv} \{\pm (1/2, 1)^{\intercal}, \pm (1/2, 2)^{\intercal}\} \in \mathcal{C}_1^n$ (see Figure 1 left). Clearly K is a lattice space filler, i.e., a body which covers the space by lattice translates in such a way that two different translates do not overlap, but apparently K is not contained in \mathcal{C}_3^n . Moreover in Section 4 we will show that $K \in \mathcal{C}_2^n$ and hence we also know $\mathcal{C}_2^n \not\subseteq \mathcal{C}_3^n$; in the figure (on the right) the parallelogram K has been multiplied by diag(6/5, 11/10).

FIGURE 1. An example for $\mathcal{C}_1^n \not\subseteq \mathcal{C}_3^n$ and $\mathcal{C}_2^n \not\subseteq \mathcal{C}_3^n$.

In order to verify that $C_1^n \not\subseteq C_2^n$ we use the following example taken from [1]. Let K be the lattice space filler conv $\{\pm(1/4,1)^{\intercal}, \pm(3/4,1)^{\intercal}\}$ (see Figure 2 left). If we multiply K by diag(10/9, 1) then we see (Figure 2 right) that it is not a covering anymore. Since $K \in C_3^n$, the example also shows that $C_3^n \not\subseteq C_2^n$.

In [1, Question 7.3] the authors raised the question whether we can have $C_1^n \subseteq C_2^n$ at least "up to a constant", i.e.,

(1.1) Does there exist a universal constant
$$c \ge 1$$
 such that $c C_1^n \subseteq C_2^n$, i.e., $c K \in C_2^n$ for all $K \in C_1^n$?

We will answer that question in the negative in Section 2. In fact, we will show that there even does not exist a constant which might depend on the dimension.

FIGURE 2. An example for $\mathcal{C}_1^n \not\subseteq \mathcal{C}_2^n$ and $\mathcal{C}_3^n \not\subseteq \mathcal{C}_2^n$.

Theorem 1.1. For any $n, M \in \mathbb{N}$, $n \geq 2$, there exists a convex body $K \in \mathcal{C}_1^n$ such that $MK \notin \mathcal{C}_2^n$.

Hence in order to belong to C_2^n or C_3^n a body $K \in C_1^n$ has to satisfy more structural properties. In order to describe such a property which was suggested in [1] we introduce the following notation: for a subset $I \subseteq \{1, \ldots, n\}$ let L_I be the (#I)-dimensional coordinate plane given by

$$L_I = \left\{ x \in \mathbb{R}^n : x_i = 0 \text{ for all } i \in \{1, \dots, n\} \setminus I \right\}$$

where #I denotes the cardinal of I and $L_{\{1,\dots,n\}}$ is meant to be \mathbb{R}^n . With this notation we set

$$\overline{\mathcal{C}}_1^n = \left\{ K \in \mathcal{K}_0^n : \mu(K \cap L_I) \le 1 \text{ for all } I \subseteq \{1, \dots, n\} \right\},\$$

where the inhomogeneous minimum $\mu(K \cap L_I)$ is taken with respect to the (#I)-dimensional integral lattice $\mathbb{Z}^n \cap L_I$. Regarding this restricted family $\overline{\mathcal{C}}_1^n$, Dilworth et. al. asked [1, Questions 7.1/7.2]:

I) Is
$$\overline{\mathcal{C}}_1^n \subseteq \mathcal{C}_2^n$$
 or $\overline{\mathcal{C}}_1^n \subseteq \mathcal{C}_3^n$?

(1.2) II) Does there exist (at least) a universal constant $c \ge 1$ such that $c \overline{\mathcal{C}}_1^n \subseteq \mathcal{C}_2^n$ or $c \overline{\mathcal{C}}_1^n \subseteq \mathcal{C}_3^n$?

Unfortunately, we can settle that problem only in the planar case, where I) has an affirmative answer and which can be embedded in the following slightly more general result.

Theorem 1.2. Let $n \ge 2$. Then $\lceil n/2 \rceil \overline{\mathcal{C}}_1^n \subseteq \mathcal{C}_2^n$ and $(n/2) \overline{\mathcal{C}}_1^n \subseteq \mathcal{C}_3^n$.

Moreover, as shown in Remark 3.2, these inclusions are already strict in the case n = 2.

The paper is organized as follows. The proof of Theorem 1.1 will be given in the next section. In Section 3 we will give our partial answer to question (1.2), and final remarks and comments are contained in Section 4.

2. A negative answer to question (1.1)

Obviously, if a convex body $K \in \mathcal{K}_0^n$ contains the cube C_n of edge length 1 centered at the origin then $\mu(K) \leq 1$. Since C_n is symmetric with respect to

all coordinate hyperplanes we certainly have that $C_n \subseteq \text{diag}(\rho_1, \ldots, \rho_n) C_n$ for any choice of real numbers $\rho_i \ge 1$. Thus if

$$\mathbf{r}(K;C_n) = \max\{r > 0 : r C_n \subseteq K\}$$

denotes the inradius of K with respect to C_n , we have for all $K \in \mathcal{K}_0^n$

$$\frac{1}{\mathbf{r}(K;C_n)} \, K \in \mathcal{C}_2^n$$

Of course, even for bodies in the class C_1^n , the factor $1/r(K; C_n)$ might be arbitrarily large. The next lemma, however, shows that this is all what we actually can expect, i.e., $1/r(K; C_n)$ has the right order for a factor c guaranteeing $c K \in C_2^n$ for all $K \in C_1^n$.

Lemma 2.1. For any dimension $n \ge 2$ and any positive integer M there exists a lattice space filler $P_M^n \in \mathcal{K}_0^n$ with $r(P_M^n; C_n) = 1/(2(M+1))$ and $c P_M^n \in \mathcal{C}_2^n$ only if $c \ge M$.

Proof. We start in dimension n = 2. For the given integer M we consider the parallelogram $P_M^2 = \operatorname{conv} \{ \pm (1/2)(M+1, M+2)^{\intercal}, \pm (1/2)(M-1, M)^{\intercal} \}$ (see Figure 3 left).

FIGURE 3. The parallelograms P_M^2 and \overline{P}_M^2 for M = 4.

Clearly P_M^2 is the linear image of the cube C_2 under the unimodular transformation

$$A = \begin{pmatrix} M & 1\\ M+1 & 1 \end{pmatrix} \in \mathrm{GL}(2,\mathbb{Z}).$$

Hence P_M^2 is a lattice space filler (see Figure 4 left) and the norm $|\cdot|_{P_M^2}$ associated to P_M^2 is given by

 $|(x,y)^{\mathsf{T}}|_{P^2_M} = 2 \, \max \left\{ |-x+y|, \left| (M+1) \, x - M \, y \right| \right\}.$

From that we also conclude that $r(P_M^2; C_2) = 1/(2(M+1))$.

Multiplying P_M^2 by the diagonal matrix diag((M+1)/M, 1) leads to a parallelogram \overline{P}_M^2 (see Figure 3 right) with norm

$$(x,y)^{\mathsf{T}}|_{\overline{P}^2_M} = 2 \max\left\{ \left| -\frac{M}{M+1}x + y \right|, |Mx - My| \right\}.$$

In order to determine the inhomogeneous minimum of \overline{P}_M^2 we note that the inhomogeneous minimum of a convex body $K \in \mathcal{K}_0^n$ is the maximum distance which a point can have from the lattice \mathbb{Z}^n , where the distance is measured with respect to the norm associated to the body K (see [3, pp. 98–99]). Hence

$$\mu(\overline{P}_M^2) = \max_{(x,y)^{\mathsf{T}} \in \mathbb{R}^2} \min_{(z_1,z_2)^{\mathsf{T}} \in \mathbb{Z}^2} \left| \binom{z_1}{z_2} - \binom{x}{y} \right|_{\overline{P}_M^2} \ge \min_{(z_1,z_2)^{\mathsf{T}} \in \mathbb{Z}^2} \left| \binom{z_1}{z_2} - \binom{0}{\frac{1}{2}} \right|_{\overline{P}_M^2} = M$$

(see Figure 4 right). In fact, it is easy to see that we have actually equality. Hence for any constant c with $c P_M^2 \in \mathcal{C}_2^n$ we have the lower bound $c \ge M$ which proves the lemma in the planar case.

For general $n \geq 3$ we just take a parallelepiped given as an iterated prism over P_M^2 , i.e.,

$$P_M^n := P_M^2 + \operatorname{conv}\left\{-\frac{1}{2}e_3, \frac{1}{2}e_3\right\} + \ldots + \operatorname{conv}\left\{-\frac{1}{2}e_n, \frac{1}{2}e_n\right\}.$$

Here e_i denotes the *i*-th canonical unit vector, and P_M^2 is embedded in the plane $L_{\{1,2\}}$. Of course, P_M^n is a lattice space filler with $r(P_M^n; C_n) = r(P_M^2; C_2)$, and multiplying P_M^n by the diagonal matrix diag((M + 1)/M, 1, 1, ..., 1) leads to the parallelepiped

$$\overline{P}_M^n = \overline{P}_M^2 + \operatorname{conv}\left\{-\frac{1}{2}e_3, \frac{1}{2}e_3\right\} + \ldots + \operatorname{conv}\left\{-\frac{1}{2}e_n, \frac{1}{2}e_n\right\}.$$
$$\mu(\overline{P}_M^n) = \mu(\overline{P}_M^2) > M.$$

Hence $\mu(\overline{P}_M^n) = \mu(\overline{P}_M^2) \ge M$.

Figure 4 shows that the parallelogram P_4^2 is clearly a space filler, whereas \overline{P}_4^2 needs to be multiplied by 4 in order to cover the plane by translates of \mathbb{Z}^2 .

Of course, Theorem 1.1 is a direct consequence of the above result.

3. Partial answers to question (1.2)

The proof of Theorem 1.2 relies heavily on a theorem about planar finite lattice coverings (see [4]). In order to state it we need the notion of lattice polygon, which is the convex hull of finitely many lattice points in the plane. Moreover, for such a lattice polygon P, the boundary of P is denoted by bd P.

Theorem 3.1 ([4]). Let $K \in C_1^2$ and let $P \subset \mathbb{R}^2$ be a lattice polygon. Then $P \subseteq (P \cap \mathbb{Z}^2) + K$ if and only if $\operatorname{bd} P \subseteq (P \cap \mathbb{Z}^2) + K$.

Proof of Theorem 1.2. On account of Theorem 3.1 both inclusions can be easily proved by inductive arguments.

First we treat the inclusion $(n/2)\overline{\mathcal{C}}_1^n \subseteq \mathcal{C}_3^n$. Let n = 2 and let $K \in \overline{\mathcal{C}}_1^2$. Then $K \in \mathcal{C}_1^2$ and moreover $K \cap L_{\{i\}}$ covers the coordinate axis $L_{\{i\}}$ by translates of

FIGURE 4. The parallelogram \overline{P}_4^2 is not a lattice space filler.

 $\mathbb{Z}^2 \cap L_{\{i\}}, i = 1, 2$. In particular, the length of the sections $K \cap L_{\{i\}}, i = 1, 2$, are not smaller than 1, which shows that

conv
$$\{0, e_i\} \subseteq \left[\left(K \cap L_{\{i\}} \right) + 0 \right] \cup \left[\left(K \cap L_{\{i\}} \right) + e_i \right], \quad i = 1, 2.$$

Therefore the boundary of the square $[0,1]^2$ is covered by $\{0,1\}^2 + K$, and Theorem 3.1 implies that $[0,1]^2 \subseteq \{0,1\}^2 + K$. Thus $K \in \mathcal{C}_3^2$, as required.

Next let $n \geq 3$ and let $K \in \overline{C}_1^n$. We have to show that for any $x \in [0, 1]^n$ there exists $v \in \{0, 1\}^n$ such that $|x - v|_K \leq n/2$, where again $|\cdot|_K$ denotes the norm induced by K. So let $x = (x_1, \ldots, x_n) \in [0, 1]^n$ and by our hypothesis we may assume $0 < x_i < 1, 1 \leq i \leq n$. Since $K + \mathbb{Z}^n$ is a covering, there exists $b \in \mathbb{Z}^n$ verifying $|x - b|_K \leq 1$. Now if $b \notin \{0, 1\}^n$ then there exists $\overline{\lambda}$, with $0 < \overline{\lambda} \leq 1/2$, such that $(1 - \overline{\lambda})x + \overline{\lambda}b$ is contained in a facet F of the cube $[0, 1]^n$. Thus, by induction, we may assume that there exists $v \in \{0, 1\}^n \cap F$ such that

$$\left| (1-\overline{\lambda})x + \overline{\lambda}b - v \right|_{K} \le \left| (1-\overline{\lambda})x + \overline{\lambda}b - v \right|_{K \cap (\operatorname{aff} F - v)} \le \frac{n-1}{2};$$

here aff F denotes the affine hull of F. Finally, by the triangle inequality we can conclude that

$$|x-v|_K \le \frac{n-1}{2} + \overline{\lambda}|x-b|_K \le \frac{n}{2}.$$

Next we consider the inclusion $\overline{\mathcal{C}}_1^n \subseteq \lceil n/2 \rceil \mathcal{C}_2^n$. Let n = 2 and let $\rho_1, \rho_2 \ge 1$. For $K \in \overline{\mathcal{C}}_1^2$ we certainly know that also the body diag $(\rho_1, \rho_2) K \cap L_{\{i\}}$ covers the coordinate axis $L_{\{i\}}$. Hence, as in the first case, we conclude

(3.1)
$$\operatorname{diag}(\rho_1, \rho_2) K \in \mathcal{C}_3^2.$$

Thus $\mu(\operatorname{diag}(\rho_1, \rho_2) K) \leq 1$ and, in particular, $K \in \mathcal{C}_2^2$.

Now let $n \geq 3$. Let $K \in \overline{\mathcal{C}}_1^n$ and let $\rho_i \geq 1, 1 \leq i \leq n$. Furthermore, let $x \in [0,1]^n$, and for $I \subseteq \{1,\ldots,n\}$ we write x_I to denote the orthogonal projection of x onto the (#I)-dimensional coordinate plane L_I . By (3.1) we know that for any subset I with #I = 2 there exists $v_I \in L_I \cap \{0,1\}^n$ such that

$$x_I \in v_I + \lfloor \operatorname{diag}(\rho_1, \dots, \rho_n) K \cap L_I \rfloor.$$

Since $K \in \overline{\mathcal{C}}_1^n$ we have an analogous relation for singletons *I*. Thus if *n* is odd we get

$$x = x_{\{1,2\}} + x_{\{3,4\}} + \dots + x_{\{n-2,n-1\}} + x_{\{n\}}$$

$$\in v_{\{1,2\}} + v_{\{3,4\}} + \dots + v_{\{n-2,n-1\}} + v_{\{n\}} + \left\lceil \frac{n}{2} \right\rceil \operatorname{diag}(\rho_1, \dots, \rho_n) K,$$

whereas for n even, since we can decompose the space in an orthogonal sum of only 2-dimensional spaces, we obtain

$$x = x_{\{1,2\}} + x_{\{3,4\}} + \dots + x_{\{n-1,n\}}$$

$$\in v_{\{1,2\}} + v_{\{3,4\}} + \dots + v_{\{n-1,n\}} + \frac{n}{2} \operatorname{diag}(\rho_1, \dots, \rho_n) K.$$

This shows that $\lceil n/2 \rceil$ diag $(\rho_1, \ldots, \rho_n) K \in \overline{\mathcal{C}}_3^n$, and so we get $\lceil n/2 \rceil K \in \mathcal{C}_2^n$. \Box

Remark 3.2. The parallelogram

$$P_{\varepsilon} = \operatorname{conv}\left\{\pm(\varepsilon, 0)^{\mathsf{T}}, \pm\left(\frac{\varepsilon}{4\varepsilon - 1}, \frac{2\varepsilon}{4\varepsilon - 1}\right)^{\mathsf{T}}\right\}, \quad \frac{1}{4} < \varepsilon < \frac{1}{2},$$

as depicted in Figure 5, shows that the inclusion $\overline{\mathcal{C}}_1^2 \subsetneq \mathcal{C}_3^2$ is strict: it clearly covers the square by translates of $\{0,1\}^2$ but $\mu(P_{\varepsilon} \cap L_{\{1\}}) > 1$.

FIGURE 5. The parallelogram $P_{\varepsilon} \in \mathcal{C}_3^2 \setminus \overline{\mathcal{C}}_1^2$ for $\varepsilon = 2/5$.

The same example (as well as the parallelogram shown in Figure 1) shows that the inclusion $\overline{C}_1^2 \subsetneq C_2^2$ is also strict.

4. FINAL REMARKS

In order to complete the study of the possible inclusions among the different families, we still have to show $C_2^n \not\subseteq C_3^n$, as promised in the introduction. To this end we consider again the parallelogram $K = \text{conv} \{\pm (1/2, 1)^{\mathsf{T}}, \pm (1/2, 2)^{\mathsf{T}}\}$ (see Figure 1 left). Clearly K is a lattice space filler, and moreover, it is easy to check that K covers the slab $\{(x, y)^{\mathsf{T}} \in \mathbb{R}^2 : -1/2 \leq x \leq 1/2\}$ by translates of $\mathbb{Z}^2 \cap \{x = 0\}$, i.e.,

(4.1)
$$\{k e_2 : k \in \mathbb{Z}\} + K = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : -\frac{1}{2} \le x \le \frac{1}{2} \right\}.$$

This is certainly still true if we replace K by $\operatorname{diag}(\rho_1, \rho_2) K$, as long as $\rho_1, \rho_2 \ge 1$.

So we have shown that all possible inclusions are strict. We would like to remark that it seems to be rather difficult to give good

bounds on the inhomogeneous minimum $\mu(\operatorname{diag}(\rho_1, \ldots, \rho_n) K)$ depending on ρ_i . Regarded as a function in ρ_i , $\mu(\operatorname{diag}(\rho_1, \ldots, \rho_n) K)$ "looks" to be rather "wild". For instance, Figure 6 shows a plot of the function $\mu(\operatorname{diag}(\rho, 1) P_4^2)$, $1 \le \rho \le 4$. Here P_4^2 is the parallelogram described in the proof of Lemma 2.1, see Figure 3. Of course, whenever ρ is an integer we always have $\mu(\operatorname{diag}(\rho, 1) P_4^2) \le 1$, but not much more can be said.

FIGURE 6. μ (diag(ρ , 1) P_4^2), $1 \le \rho \le 4$.

References

- S. J. Dilworth, E. Odell, T. Schlumprecht, A. Zsák, Coefficient quantization in Banach spaces, *Found. Comput. Math.* 8 (2008), no. 6, 703–736.
- [2] P. M. Gruber, Convex and Discrete Geometry, Grundlehren der mathematischen Wissenschaften, vol. 336. Springer, Berlin Heidelberg, 2007.
- [3] P. M. Gruber, C. G. Lekkerkerker, *Geometry of Numbers*, second ed., vol. 37. North-Holland Publishing Co., Amsterdam, 1987.
- [4] U. Schnell, A. Schürmann, A criterion for finite lattice coverings, *Period. Math. Hungar.* 45 (2002), no. 1–2, 131–134.

MARTIN HENK, UNIVERSITÄT MAGDEBURG, INSTITUT FÜR ALGEBRA UND GEOMETRIE, UNIVERSITÄTSPLATZ 2, D-39106 MAGDEBURG, GERMANY *E-mail address*: henk@math.uni-magdeburg.de

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100-Murcia, Spain

E-mail address: mhcifre@um.es