COVERINGS AND COMPRESSED LATTICES

MARTIN HENK AND MARÍA A. HERNÁNDEZ CIFRE

Abstract

Motivated by "finite alphabet" approximation problems in infi-nite-dimensional Banach spaces we study the behavior of the inhomogeneous minimum of a convex body K with respect to the integral lattice \mathbb{Z}^{n}, if \mathbb{Z}^{n} is compressed along (some of) the coordinate axes. In particular, we show that for certain convex bodies and deformations the inhomogeneous minimum can be arbitrarily large which answers a question in the negative posted in the context with the above mentioned approximation problems.

1. Introduction

In [1] the authors study several approximation properties related to the problem of approximating an element of an infinite-dimensional space by a discrete structure which might be regarded as a kind of infinite-dimensional lattice. Regarding these approximations they pose at the end of their article several questions and the corresponding finite-dimensional analogues [1, Questions 7.1, 7.2]. Here we investigate these finite-dimensional versions for which we need some basic notation from Geometry of Numbers (see, e.g., [3, 2]).

The set of all symmetric convex bodies with respect to the origin 0 in \mathbb{R}^{n} with non-empty interior is denoted by \mathcal{K}_{0}^{n}. For $K \in \mathcal{K}_{0}^{n}$ the inhomogeneous minimum of K with respect to the integral lattice \mathbb{Z}^{n} is defined as

$$
\mu(K)=\min \left\{\mu>0: \mathbb{Z}^{n}+\mu K=\mathbb{R}^{n}\right\}
$$

i.e., it is the smallest positive number such that the dilated body $\mu(K) K$ covers \mathbb{R}^{n} by translates of the lattice \mathbb{Z}^{n}. Obviously, for any positive number $\rho>0$ we have $\mu(\rho K)=(1 / \rho) \mu(K)$, and the inhomogeneous minimum measures how well the space can be covered by lattice translates of K. According to its covering properties three families of convex bodies are considered in [1]:

$$
\begin{aligned}
& \mathcal{C}_{1}^{n}=\left\{K \in \mathcal{K}_{0}^{n}: \mu(K) \leq 1\right\}, \\
& \mathcal{C}_{2}^{n}=\left\{K \in \mathcal{K}_{0}^{n}: \mu\left(\operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right) K\right) \leq 1, \text { for all } \rho_{i} \in[1,2]\right\}, \\
& \mathcal{C}_{3}^{n}=\left\{K \in \mathcal{K}_{0}^{n}:[0,1]^{n} \subseteq\{0,1\}^{n}+K\right\} .
\end{aligned}
$$

Here $\operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right)$ denotes the $n \times n$ diagonal matrix with diagonal entries ρ_{i}. Observe, that in the case $\rho_{i}=\rho, 1 \leq i \leq n$, we obviously have $\mu\left(\operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right) K\right)=\mu(\rho K)=(1 / \rho) \mu(K)$. The first set \mathcal{C}_{1}^{n} consists just of

[^0]all bodies which cover the space by lattice translates and it is also clear that the bodies in \mathcal{C}_{2}^{n} and \mathcal{C}_{3}^{n} share this property. However, the inclusions are strict, i.e.,
$$
\mathcal{C}_{2}^{n} \subsetneq \mathcal{C}_{1}^{n}, \quad \mathcal{C}_{3}^{n} \subsetneq \mathcal{C}_{1}^{n} .
$$

For instance, let $K=\operatorname{conv}\left\{ \pm(1 / 2,1)^{\top}, \pm(1 / 2,2)^{\top}\right\} \in \mathcal{C}_{1}^{n}$ (see Figure 1 left). Clearly K is a lattice space filler, i.e., a body which covers the space by lattice translates in such a way that two different translates do not overlap, but apparently K is not contained in \mathcal{C}_{3}^{n}. Moreover in Section 4 we will show that $K \in \mathcal{C}_{2}^{n}$ and hence we also know $\mathcal{C}_{2}^{n} \nsubseteq \mathcal{C}_{3}^{n}$; in the figure (on the right) the parallelogram K has been multiplied by $\operatorname{diag}(6 / 5,11 / 10)$.

Figure 1. An example for $\mathcal{C}_{1}^{n} \nsubseteq \mathcal{C}_{3}^{n}$ and $\mathcal{C}_{2}^{n} \nsubseteq \mathcal{C}_{3}^{n}$.

In order to verify that $\mathcal{C}_{1}^{n} \nsubseteq \mathcal{C}_{2}^{n}$ we use the following example taken from [1]. Let K be the lattice space filler conv $\left\{ \pm(1 / 4,1)^{\top}, \pm(3 / 4,1)^{\top}\right\}$ (see Figure 2 left). If we multiply K by $\operatorname{diag}(10 / 9,1)$ then we see (Figure 2 right) that it is not a covering anymore. Since $K \in \mathcal{C}_{3}^{n}$, the example also shows that $\mathcal{C}_{3}^{n} \nsubseteq \mathcal{C}_{2}^{n}$.

In [1, Question 7.3] the authors raised the question whether we can have $\mathcal{C}_{1}^{n} \subseteq \mathcal{C}_{2}^{n}$ at least "up to a constant", i.e.,

Does there exist a universal constant $c \geq 1$ such that
$c \mathcal{C}_{1}^{n} \subseteq \mathcal{C}_{2}^{n}$, i.e., $c K \in \mathcal{C}_{2}^{n}$ for all $K \in \mathcal{C}_{1}^{n}$?
We will answer that question in the negative in Section 2. In fact, we will show that there even does not exist a constant which might depend on the dimension.

Figure 2. An example for $\mathcal{C}_{1}^{n} \nsubseteq \mathcal{C}_{2}^{n}$ and $\mathcal{C}_{3}^{n} \nsubseteq \mathcal{C}_{2}^{n}$.
Theorem 1.1. For any $n, M \in \mathbb{N}, n \geq 2$, there exists a convex body $K \in \mathcal{C}_{1}^{n}$ such that MK $\notin \mathcal{C}_{2}^{n}$.
Hence in order to belong to \mathcal{C}_{2}^{n} or \mathcal{C}_{3}^{n} a body $K \in \mathcal{C}_{1}^{n}$ has to satisfy more structural properties. In order to describe such a property which was suggested in [1] we introduce the following notation: for a subset $I \subseteq\{1, \ldots, n\}$ let L_{I} be the ($\# I$)-dimensional coordinate plane given by

$$
L_{I}=\left\{x \in \mathbb{R}^{n}: x_{i}=0 \text { for all } i \in\{1, \ldots, n\} \backslash I\right\},
$$

where $\# I$ denotes the cardinal of I and $L_{\{1, \ldots, n\}}$ is meant to be \mathbb{R}^{n}. With this notation we set

$$
\overline{\mathcal{C}}_{1}^{n}=\left\{K \in \mathcal{K}_{0}^{n}: \mu\left(K \cap L_{I}\right) \leq 1 \text { for all } I \subseteq\{1, \ldots, n\}\right\},
$$

where the inhomogeneous minimum $\mu\left(K \cap L_{I}\right)$ is taken with respect to the (\#I)-dimensional integral lattice $\mathbb{Z}^{n} \cap L_{I}$. Regarding this restricted family $\overline{\mathcal{C}}_{1}^{n}$, Dilworth et. al. asked [1, Questions 7.1/7.2]:
I) Is $\overline{\mathcal{C}}_{1}^{n} \subseteq \mathcal{C}_{2}^{n}$ or $\overline{\mathcal{C}}_{1}^{n} \subseteq \mathcal{C}_{3}^{n}$?
(1.2) II) Does there exist (at least) a universal constant $c \geq 1$ such that

$$
c \overline{\mathcal{C}}_{1}^{n} \subseteq \mathcal{C}_{2}^{n} \text { or } c \overline{\mathcal{C}}_{1}^{n} \subseteq \mathcal{C}_{3}^{n} ?
$$

Unfortunately, we can settle that problem only in the planar case, where I) has an affirmative answer and which can be embedded in the following slightly more general result.
Theorem 1.2. Let $n \geq 2$. Then $\lceil n / 2\rceil \overline{\mathcal{C}}_{1}^{n} \subseteq \mathcal{C}_{2}^{n}$ and $(n / 2) \overline{\mathcal{C}}_{1}^{n} \subseteq \mathcal{C}_{3}^{n}$.
Moreover, as shown in Remark 3.2, these inclusions are already strict in the case $n=2$.
The paper is organized as follows. The proof of Theorem 1.1 will be given in the next section. In Section 3 we will give our partial answer to question (1.2), and final remarks and comments are contained in Section 4.

2. A negative answer to question (1.1)

Obviously, if a convex body $K \in \mathcal{K}_{0}^{n}$ contains the cube C_{n} of edge length 1 centered at the origin then $\mu(K) \leq 1$. Since C_{n} is symmetric with respect to
all coordinate hyperplanes we certainly have that $C_{n} \subseteq \operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right) C_{n}$ for any choice of real numbers $\rho_{i} \geq 1$. Thus if

$$
\mathrm{r}\left(K ; C_{n}\right)=\max \left\{r>0: r C_{n} \subseteq K\right\}
$$

denotes the inradius of K with respect to C_{n}, we have for all $K \in \mathcal{K}_{0}^{n}$

$$
\frac{1}{\mathrm{r}\left(K ; C_{n}\right)} K \in \mathcal{C}_{2}^{n}
$$

Of course, even for bodies in the class \mathcal{C}_{1}^{n}, the factor $1 / \mathrm{r}\left(K ; C_{n}\right)$ might be arbitrarily large. The next lemma, however, shows that this is all what we actually can expect, i.e., $1 / \mathrm{r}\left(K ; C_{n}\right)$ has the right order for a factor c guaranteeing $c K \in \mathcal{C}_{2}^{n}$ for all $K \in \mathcal{C}_{1}^{n}$.

Lemma 2.1. For any dimension $n \geq 2$ and any positive integer M there exists a lattice space filler $P_{M}^{n} \in \mathcal{K}_{0}^{n}$ with $\mathrm{r}\left(P_{M}^{n} ; C_{n}\right)=1 /(2(M+1))$ and $c P_{M}^{n} \in \mathcal{C}_{2}^{n}$ only if $c \geq M$.

Proof. We start in dimension $n=2$. For the given integer M we consider the parallelogram $P_{M}^{2}=\operatorname{conv}\left\{ \pm(1 / 2)(M+1, M+2)^{\top}, \pm(1 / 2)(M-1, M)^{\top}\right\}$ (see Figure 3 left).

Figure 3. The parallelograms P_{M}^{2} and \bar{P}_{M}^{2} for $M=4$.

Clearly P_{M}^{2} is the linear image of the cube C_{2} under the unimodular transformation

$$
A=\left(\begin{array}{cc}
M & 1 \\
M+1 & 1
\end{array}\right) \in \mathrm{GL}(2, \mathbb{Z})
$$

Hence P_{M}^{2} is a lattice space filler (see Figure 4 left) and the norm $|\cdot|_{P_{M}^{2}}$ associated to P_{M}^{2} is given by

$$
\left|(x, y)^{\top}\right|_{P_{M}^{2}}=2 \max \{|-x+y|,|(M+1) x-M y|\}
$$

From that we also conclude that $\mathrm{r}\left(P_{M}^{2} ; C_{2}\right)=1 /(2(M+1))$.

Multiplying P_{M}^{2} by the diagonal matrix $\operatorname{diag}((M+1) / M, 1)$ leads to a parallelogram \bar{P}_{M}^{2} (see Figure 3 right) with norm

$$
\left|(x, y)^{\boldsymbol{\top}}\right|_{\bar{P}_{M}^{2}}=2 \max \left\{\left|-\frac{M}{M+1} x+y\right|,|M x-M y|\right\}
$$

In order to determine the inhomogeneous minimum of \bar{P}_{M}^{2} we note that the inhomogeneous minimum of a convex body $K \in \mathcal{K}_{0}^{n}$ is the maximum distance which a point can have from the lattice \mathbb{Z}^{n}, where the distance is measured with respect to the norm associated to the body K (see [3, pp. 98-99]). Hence

$$
\mu\left(\bar{P}_{M}^{2}\right)=\max _{(x, y)^{\top} \in \mathbb{R}^{2}} \min _{\left(z_{1}, z_{2}\right)^{\top} \in \mathbb{Z}^{2}}\left|\binom{z_{1}}{z_{2}}-\binom{x}{y}\right|_{\bar{P}_{M}^{2}} \geq \min _{\left(z_{1}, z_{2}\right)^{\top} \in \mathbb{Z}^{2}}\left|\binom{z_{1}}{z_{2}}-\binom{0}{\frac{1}{2}}\right|_{\bar{P}_{M}^{2}}=M
$$

(see Figure 4 right). In fact, it is easy to see that we have actually equality. Hence for any constant c with $c P_{M}^{2} \in \mathcal{C}_{2}^{n}$ we have the lower bound $c \geq M$ which proves the lemma in the planar case.

For general $n \geq 3$ we just take a parallelepiped given as an iterated prism over P_{M}^{2}, i.e.,

$$
P_{M}^{n}:=P_{M}^{2}+\operatorname{conv}\left\{-\frac{1}{2} e_{3}, \frac{1}{2} e_{3}\right\}+\ldots+\operatorname{conv}\left\{-\frac{1}{2} e_{n}, \frac{1}{2} e_{n}\right\}
$$

Here e_{i} denotes the i-th canonical unit vector, and P_{M}^{2} is embedded in the plane $L_{\{1,2\}}$. Of course, P_{M}^{n} is a lattice space filler with $\mathrm{r}\left(P_{M}^{n} ; C_{n}\right)=\mathrm{r}\left(P_{M}^{2} ; C_{2}\right)$, and multiplying P_{M}^{n} by the diagonal matrix $\operatorname{diag}((M+1) / M, 1,1, \ldots, 1)$ leads to the parallelepiped

$$
\bar{P}_{M}^{n}=\bar{P}_{M}^{2}+\operatorname{conv}\left\{-\frac{1}{2} e_{3}, \frac{1}{2} e_{3}\right\}+\ldots+\operatorname{conv}\left\{-\frac{1}{2} e_{n}, \frac{1}{2} e_{n}\right\}
$$

Hence $\mu\left(\bar{P}_{M}^{n}\right)=\mu\left(\bar{P}_{M}^{2}\right) \geq M$.
Figure 4 shows that the parallelogram P_{4}^{2} is clearly a space filler, whereas \bar{P}_{4}^{2} needs to be multiplied by 4 in order to cover the plane by translates of \mathbb{Z}^{2}.

Of course, Theorem 1.1 is a direct consequence of the above result.

3. Partial answers to question (1.2)

The proof of Theorem 1.2 relies heavily on a theorem about planar finite lattice coverings (see [4]). In order to state it we need the notion of lattice polygon, which is the convex hull of finitely many lattice points in the plane. Moreover, for such a lattice polygon P, the boundary of P is denoted by bd P.
Theorem 3.1 ([4]). Let $K \in \mathcal{C}_{1}^{2}$ and let $P \subset \mathbb{R}^{2}$ be a lattice polygon. Then $P \subseteq\left(P \cap \mathbb{Z}^{2}\right)+K$ if and only if $\operatorname{bd} P \subseteq\left(P \cap \mathbb{Z}^{2}\right)+K$.

Proof of Theorem 1.2. On account of Theorem 3.1 both inclusions can be easily proved by inductive arguments.

First we treat the inclusion $(n / 2) \overline{\mathcal{C}}_{1}^{n} \subseteq \mathcal{C}_{3}^{n}$. Let $n=2$ and let $K \in \overline{\mathcal{C}}_{1}^{2}$. Then $K \in \mathcal{C}_{1}^{2}$ and moreover $K \cap L_{\{i\}}$ covers the coordinate axis $L_{\{i\}}$ by translates of

Figure 4. The parallelogram \bar{P}_{4}^{2} is not a lattice space filler.
$\mathbb{Z}^{2} \cap L_{\{i\}}, i=1,2$. In particular, the length of the sections $K \cap L_{\{i\}}, i=1,2$, are not smaller than 1 , which shows that

$$
\operatorname{conv}\left\{0, e_{i}\right\} \subseteq\left[\left(K \cap L_{\{i\}}\right)+0\right] \cup\left[\left(K \cap L_{\{i\}}\right)+e_{i}\right], \quad i=1,2 .
$$

Therefore the boundary of the square $[0,1]^{2}$ is covered by $\{0,1\}^{2}+K$, and Theorem 3.1 implies that $[0,1]^{2} \subseteq\{0,1\}^{2}+K$. Thus $K \in \mathcal{C}_{3}^{2}$, as required.

Next let $n \geq 3$ and let $K \in \overline{\mathcal{C}}_{1}^{n}$. We have to show that for any $x \in[0,1]^{n}$ there exists $v \in\{0,1\}^{n}$ such that $|x-v|_{K} \leq n / 2$, where again $|\cdot|_{K}$ denotes the norm induced by K. So let $x=\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$ and by our hypothesis we may assume $0<x_{i}<1,1 \leq i \leq n$. Since $K+\mathbb{Z}^{n}$ is a covering, there exists $b \in \mathbb{Z}^{n}$ verifying $|x-b|_{K} \leq 1$. Now if $b \notin\{0,1\}^{n}$ then there exists $\bar{\lambda}$, with $0<\bar{\lambda} \leq 1 / 2$, such that $(1-\bar{\lambda}) x+\bar{\lambda} b$ is contained in a facet F of the cube $[0,1]^{n}$. Thus, by induction, we may assume that there exists $v \in\{0,1\}^{n} \cap F$ such that

$$
|(1-\bar{\lambda}) x+\bar{\lambda} b-v|_{K} \leq|(1-\bar{\lambda}) x+\bar{\lambda} b-v|_{K \cap(\operatorname{aff} F-v)} \leq \frac{n-1}{2} ;
$$

here aff F denotes the affine hull of F. Finally, by the triangle inequality we can conclude that

$$
|x-v|_{K} \leq \frac{n-1}{2}+\bar{\lambda}|x-b|_{K} \leq \frac{n}{2} .
$$

Next we consider the inclusion $\overline{\mathcal{C}}_{1}^{n} \subseteq\lceil n / 2\rceil \mathcal{C}_{2}^{n}$. Let $n=2$ and let $\rho_{1}, \rho_{2} \geq 1$. For $K \in \overline{\mathcal{C}}_{1}^{2}$ we certainly know that also the body $\operatorname{diag}\left(\rho_{1}, \rho_{2}\right) K \cap L_{\{i\}}$ covers the coordinate axis $L_{\{i\}}$. Hence, as in the first case, we conclude

$$
\begin{equation*}
\operatorname{diag}\left(\rho_{1}, \rho_{2}\right) K \in \mathcal{C}_{3}^{2} . \tag{3.1}
\end{equation*}
$$

Thus $\mu\left(\operatorname{diag}\left(\rho_{1}, \rho_{2}\right) K\right) \leq 1$ and, in particular, $K \in \mathcal{C}_{2}^{2}$.

Now let $n \geq 3$. Let $K \in \overline{\mathcal{C}}_{1}^{n}$ and let $\rho_{i} \geq 1,1 \leq i \leq n$. Furthermore, let $x \in[0,1]^{n}$, and for $I \subseteq\{1, \ldots, n\}$ we write x_{I} to denote the orthogonal projection of x onto the $(\# I)$-dimensional coordinate plane L_{I}. By (3.1) we know that for any subset I with $\# I=2$ there exists $v_{I} \in L_{I} \cap\{0,1\}^{n}$ such that

$$
x_{I} \in v_{I}+\left[\operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right) K \cap L_{I}\right]
$$

Since $K \in \overline{\mathcal{C}}_{1}^{n}$ we have an analogous relation for singletons I. Thus if n is odd we get

$$
\begin{aligned}
x & =x_{\{1,2\}}+x_{\{3,4\}}+\cdots+x_{\{n-2, n-1\}}+x_{\{n\}} \\
& \in v_{\{1,2\}}+v_{\{3,4\}}+\cdots+v_{\{n-2, n-1\}}+v_{\{n\}}+\left\lceil\frac{n}{2}\right\rceil \operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right) K
\end{aligned}
$$

whereas for n even, since we can decompose the space in an orthogonal sum of only 2 -dimensional spaces, we obtain

$$
\begin{aligned}
x & =x_{\{1,2\}}+x_{\{3,4\}}+\cdots+x_{\{n-1, n\}} \\
& \in v_{\{1,2\}}+v_{\{3,4\}}+\cdots+v_{\{n-1, n\}}+\frac{n}{2} \operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right) K
\end{aligned}
$$

This shows that $\lceil n / 2\rceil \operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right) K \in \overline{\mathcal{C}}_{3}^{n}$, and so we get $\lceil n / 2\rceil K \in \mathcal{C}_{2}^{n}$.
Remark 3.2. The parallelogram

$$
P_{\varepsilon}=\operatorname{conv}\left\{ \pm(\varepsilon, 0)^{\top}, \pm\left(\frac{\varepsilon}{4 \varepsilon-1}, \frac{2 \varepsilon}{4 \varepsilon-1}\right)^{\top}\right\}, \quad \frac{1}{4}<\varepsilon<\frac{1}{2}
$$

as depicted in Figure 5, shows that the inclusion $\overline{\mathcal{C}}_{1}^{2} \subsetneq \mathcal{C}_{3}^{2}$ is strict: it clearly covers the square by translates of $\{0,1\}^{2}$ but $\mu\left(P_{\varepsilon} \cap L_{\{1\}}\right)>1$.

Figure 5. The parallelogram $P_{\varepsilon} \in \mathcal{C}_{3}^{2} \backslash \overline{\mathcal{C}}_{1}^{2}$ for $\varepsilon=2 / 5$

The same example (as well as the parallelogram shown in Figure 1) shows that the inclusion $\overline{\mathcal{C}}_{1}^{2} \subsetneq \mathcal{C}_{2}^{2}$ is also strict.

4. Final Remarks

In order to complete the study of the possible inclusions among the different families, we still have to show $\mathcal{C}_{2}^{n} \nsubseteq \mathcal{C}_{3}^{n}$, as promised in the introduction. To this end we consider again the parallelogram $K=\operatorname{conv}\left\{ \pm(1 / 2,1)^{\top}, \pm(1 / 2,2)^{\top}\right\}$ (see Figure 1 left). Clearly K is a lattice space filler, and moreover, it is easy to check that K covers the slab $\left\{(x, y)^{\top} \in \mathbb{R}^{2}:-1 / 2 \leq x \leq 1 / 2\right\}$ by translates of $\mathbb{Z}^{2} \cap\{x=0\}$, i.e.,

$$
\begin{equation*}
\left\{k e_{2}: k \in \mathbb{Z}\right\}+K=\left\{\binom{x}{y} \in \mathbb{R}^{2}:-\frac{1}{2} \leq x \leq \frac{1}{2}\right\} \tag{4.1}
\end{equation*}
$$

This is certainly still true if we replace K by $\operatorname{diag}\left(\rho_{1}, \rho_{2}\right) K$, as long as $\rho_{1}, \rho_{2} \geq 1$.
So we have shown that all possible inclusions are strict.
We would like to remark that it seems to be rather difficult to give good bounds on the inhomogeneous minimum $\mu\left(\operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right) K\right)$ depending on ρ_{i}. Regarded as a function in $\rho_{i}, \mu\left(\operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right) K\right)$ "looks" to be rather "wild". For instance, Figure 6 shows a plot of the function $\mu\left(\operatorname{diag}(\rho, 1) P_{4}^{2}\right), 1 \leq \rho \leq 4$. Here P_{4}^{2} is the parallelogram described in the proof of Lemma 2.1, see Figure 3 . Of course, whenever ρ is an integer we always have $\mu\left(\operatorname{diag}(\rho, 1) P_{4}^{2}\right) \leq 1$, but not much more can be said.

Figure 6. $\mu\left(\operatorname{diag}(\rho, 1) P_{4}^{2}\right), 1 \leq \rho \leq 4$.

References

[1] S. J. Dilworth, E. Odell, T. Schlumprecht, A. Zsák, Coefficient quantization in Banach spaces, Found. Comput. Math. 8 (2008), no. 6, 703-736.
[2] P. M. Gruber, Convex and Discrete Geometry, Grundlehren der mathematischen Wissenschaften, vol. 336. Springer, Berlin Heidelberg, 2007.
[3] P. M. Gruber, C. G. Lekkerkerker, Geometry of Numbers, second ed., vol. 37. NorthHolland Publishing Co., Amsterdam, 1987.
[4] U. Schnell, A. Schürmann, A criterion for finite lattice coverings, Period. Math. Hungar. 45 (2002), no. 1-2, 131-134.

Martin Henk, Universität Magdeburg, Institut für Algebra und Geometrie, Universitätsplatz 2, D-39106 Magdeburg, Germany

E-mail address: henk@math.uni-magdeburg.de
Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100-Murcia, Spain

E-mail address: mhcifre@um.es

[^0]: 2000 Mathematics Subject Classification. 52C07, 11H06.
 Key words and phrases. Coverings, Lattices, Convex bodies.
 Second author is supported by Dirección General de Investigación (MEC) MTM2007-64504 and by "Programa de Ayudas a Grupos de Excelencia de la Región de Murcia", Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia (Plan Regional de Ciencia y Tecnología 2007/2010), 04540/GERM/06.

